Embeddings & Vector Store
Come vengono generati e utilizzati gli embeddings, e come interagiamo con Qdrant.
Generazione embeddings (via Worker)
/main/src/agentTools/qdrantService.ts
export async function generateEmbeddings(text: string): Promise<number[]> {
const response = await addToQueue({ taskType: 'query:embedding', payload: { query: text } })
return response.data.taskResult
}
Client Qdrant
/main/src/index.ts
export const qdrantClient = new QdrantClient({ url: process.env.QDRANT_URL, apiKey: process.env.QDRANT_API_KEY, port: 6333 })
Ricerca vettoriale
/main/src/agentTools/qdrantService.ts
const searchResult = await qdrantClient.search(collectionName, { vector: queryEmbedding.flat(), limit, filter })